Environmental quality not only affects public health, but is also closely related to sustainable economic development. Air quality is an important area of environmental governance in my country. It is highly perceptible in daily life and directly affects people's daily production and life. It is also closely related to the economic environment, corporate development and profitability. High-quality urban development is increasingly affected by urban air quality. Constraints, the continued rise in energy consumption in economic development and the intensification of environmental degradation will restrict economic development and reduce the quality of economic development.
The Air Quality Index (AQI) is a nonlinear dimensionless index currently used in my country to quantitatively describe air quality conditions. It is suitable for expressing the short-term air quality conditions and changing trends of cities. The reference standard for index classification calculation is GB 3095-2012 "Ambient Air Quality Standard" (current, latest revised in 2012), and the pollutants participating in the evaluation are SO2, NO2, PM10, PM2.5, O3, CO etc. The publishing frequency is once every hour.
The assessment of air quality is based on relevant data obtained by urban air quality monitoring stations through fixed-point, continuous or regular sampling, measurement and analysis of pollutants present in the atmosphere and air. Air quality monitoring stations are located in the built-up areas of each city and are relatively evenly distributed, covering all built-up areas. The final air quality index is calculated from the arithmetic mean of the pollutant concentrations at all monitoring points in the city, representing The overall average concentration of pollutants in the built-up area of the city. Therefore, air quality station monitoring data is the first-hand data for assessing air quality, and the location of air quality monitoring stations will also affect the assessment of air quality.
Air quality data are often used in empirical research due to the rapid dissipation of air pollutants, rapid response to treatment measures, and the availability of daily data. The data of the CnOpenData platform includes daily data on air quality in each city, as well as location information and monitoring data of each monitoring station. All information since May 13, 2014 has been collected to provide air quality information. Quality related research provides a complete and reliable source of data.
Time interval
Monitoring time starts from 2014.05.13
Field display
Monitoring site list
Chinese field | Chinese definition of fields |
---|---|
Monitoring point coding | Monitoring point coding |
Monitoring point name | Monitoring point name |
City | City |
Longitude | Longitude |
Latitude | Latitude |
Urban air quality table
Chinese field display | Chinese definition of field |
---|---|
date | Data collection date |
hour | Data collection time |
City | Data collection city |
AQI | Air quality index |
PM2.5 | 1 hour average of particulate matter (particle size less than or equal to 2.5μm) |
PM2.5_24h | 24-hour sliding average of particulate matter (particle size less than or equal to 2.5 μm) |
PM10 | One-hour average value of particulate matter (particle size less than or equal to 10 μm) |
PM10_24h | 24-hour sliding average of particulate matter (particle size less than or equal to 10 μm) |
SO2 | 1-hour average value of sulfur dioxide |
SO2_24h | 24-hour sliding average of sulfur dioxide |
NO2 | 1-hour average value of nitrogen dioxide |
NO2_24h | 24-hour sliding average of nitrogen dioxide |
O3 | Ozone 1 hour average value |
O3_24h | Ozone daily maximum 1-hour average value |
O3_8h | Ozone 8-hour sliding average |
O3_8h_24h | Ozone daily maximum 8-hour moving average |
CO | One hour average of carbon monoxide |
CO_24h | 24-hour sliding average of carbon monoxide |
Site air quality table
Chinese field display | Chinese definition of field |
---|---|
date | Data collection date |
hour | Data collection time |
site | Data collection site |
AQI | Air quality index |
PM2.5 | 1 hour average of particulate matter (particle size less than or equal to 2.5μm) |
PM2.5_24h | 24-hour sliding average of particulate matter (particle size less than or equal to 2.5 μm) |
PM10 | One-hour average value of particulate matter (particle size less than or equal to 10 μm) |
PM10_24h | 24-hour sliding average of particulate matter (particle size less than or equal to 10 μm) |
SO2 | 1-hour average value of sulfur dioxide |
SO2_24h | 24-hour sliding average of sulfur dioxide |
NO2 | 1-hour average value of nitrogen dioxide |
NO2_24h | 24-hour sliding average of nitrogen dioxide |
O3 | Ozone 1 hour average value |
O3_24h | Ozone daily maximum 1-hour average value |
O3_8h | Ozone 8-hour sliding average |
O3_8h_24h | Ozone daily maximum 8-hour moving average |
CO | One hour average of carbon monoxide |
CO_24h | 24-hour sliding average of carbon monoxide |
Sample data
Detection site list
Monitoring point coding | Monitoring point name | City | Longitude | Latitude |
---|---|---|---|---|
1001A | Wanshou West Palace | Beijing | 116.366 | 39.8673 |
1002A | Dingling | Beijing | 116.17 | 40.2865 |
1003A | 东四 | Beijing | 116.434 | 39.9522 |
1004A | Temple of Heaven | Beijing | 116.434 | 39.8745 |
1005A | Agricultural Exhibition Hall | Beijing | 116.473 | 39.9716 |
1006A | Guan Yuan | Beijing | 116.361 | 39.9425 |
1007A | Wanliu, Haidian District | Beijing | 116.315 | 39.9934 |
1008A | Shunyi New Town | Beijing | 116.72 | 40.1438 |
1009A | Huairou Town | Beijing | 116.644 | 40.3937 |
1010A | Changping Town | Beijing | 116.23 | 40.1952 |
1011A | Olympic Sports Center | Beijing | 116.407 | 40.0031 |
1012A | Ancient City | Beijing | 116.225 | 39.9279 |
1013A | Municipal Monitoring Center | Tianjin | 117.151 | 39.097 |
1014A | Nankou Road | Tianjin | 117.193 | 39.173 |
1015A | Qinjian Road | Tianjin | 117.145 | 39.1654 |
1016A | Nanjing Road | Tianjin | 117.184 | 39.1205 |
1017A | Dazhigu No. 8 Road | Tianjin | 117.237 | 39.1082 |
1018A | The way forward | Tianjin | 117.202 | 39.0927 |
1019A | Beichen Science and Technology Park | Tianjin | 117.1837 | 39.2133 |
1020A | Tianshan Road | Tianjin | 117.269 | 39.1337 |
1021A | Yuejin Road | Tianjin | 117.307 | 39.0877 |
1023A | Fourth Street | Tianjin | 117.707 | 39.0343 |
1024A | Yongming Road | Tianjin | 117.457 | 38.8394 |
1025A | Aerospace Road | Tianjin | 117.401 | 39.124 |
1026A | Hanbei Road | Tianjin | 117.764 | 39.1587 |
1027A | Tuanbowa | Tianjin | 117.157 | 38.9194 |
1028A | Chemical Engineering School | Shijiazhuang | ||
1029A | Staff Hospital | Shijiazhuang | 114.4548 | 38.0513 |
1030A | High-tech Zone | Shijiazhuang | 114.6046 | 38.0398 |
1031A | Northwestern Water Source | Shijiazhuang | 114.5019 | 38.1398 |
1032A | Southwestern Higher Education | Shijiazhuang | 114.4586111 | 38.00583333 |
1033A | Century Park | Shijiazhuang | 114.5330556 | 38.01777778 |
1034A | People's Hall | Shijiazhuang | 114.5214 | 38.0524 |
1035A | Fenglong Mountain | Shijiazhuang | 114.3541 | 37.9097 |
1036A | Supply and Marketing Cooperative | Tangshan | 118.1662 | 39.6308 |
1037A | Radar station | Tangshan | 118.144 | 39.643 |
1038A | Materials Bureau | Tangshan | 118.1853 | 39.6407 |
1039A | Ceramic Company | Tangshan | 118.2185 | 39.6679 |
1040A | Twelve Middle School | Tangshan | 118.1838 | 39.65782 |
1041A | Hill | Tangshan | 118.1997 | 39.6295 |
1042A | Beidaihe Environmental Protection Bureau | Qinhuangdao | 119.5259 | 39.8283 |
1043A | First level | Qinhuangdao | 119.7624 | 40.0181 |
1044A | Monitoring station | Qinhuangdao | 119.6023 | 39.9567 |
1045A | City Hall | Qinhuangdao | 119.607 | 39.9358 |
1046A | Construction Building | Qinhuangdao | 119.5369 | 39.9419 |
1047A | Environmental Protection Bureau | Handan | 114.5129 | 36.61763 |
1048A | East Sewage Treatment Plant | Handan | 114.5426 | 36.6164 |
1049A | Mining Institute | Handan | 114.5035 | 36.5776 |
1050A | Congtai Park | Handan | 114.4965 | 36.61981 |
Urban air quality table
date | hour | City | AQI | PM2.5 | PM2.5_24h | PM10 | PM10_24h | SO2 | SO2_24h | NO2 | NO2_24h | O3 | O3_24h | O3_8h | O3_8h_24h | CO | CO_24h |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20140513 | 0 | 三亚 | 36 | 25 | 19 | 33 | 33 | 2 | 2 | 13 | 14 | 49 | 71 | 52 | 61 | 0.5 | 0.51 |
20140513 | 0 | 三门峡 | 95 | 48 | 48 | 140 | 117 | 26 | 29 | 37 | 25 | 4 | 134 | 42 | 98 | 1.25 | 1.15 |
20140513 | 0 | 上海 | 109 | 82 | 83 | 116 | 103 | 18 | 23 | 73 | 56 | 88 | 206 | 123 | 169 | 0.88 | 1.02 |
20140513 | 0 | 东莞 | 99 | 74 | 46 | 127 | 69 | 23 | 16 | 79 | 57 | 7 | 100 | 32 | 74 | 1.61 | 0.93 |
20140513 | 0 | 东营 | 123 | 86 | 49 | 196 | 111 | 167 | 75 | 114 | 38 | 29 | 176 | 96 | 149 | 1.62 | 0.84 |
20140513 | 0 | 中山 | 57 | 30 | 63 | 64 | 88 | 8 | 12 | 34 | 38 | 7 | 69 | 33 | 45 | 1.7 | 1.36 |
20140513 | 0 | 临安 | 114 | 86 | 49 | 155 | 108 | 21 | 12 | 43 | 31 | 59 | 121 | 82 | 102 | 0.84 | 0.83 |
20140513 | 0 | 临汾 | 125 | 95 | 72 | 170 | 116 | 50 | 77 | 43 | 37 | 33 | 110 | 61 | 93 | 2.75 | 2.99 |
20140513 | 0 | 临沂 | 119 | 73 | 56 | 188 | 148 | 79 | 62 | 104 | 57 | 11 | 94 | 44 | 82 | 1.69 | 1.09 |
20140513 | 0 | 丹东 | 106 | 80 | 38 | 125 | 64 | 17 | 19 | 39 | 25 | 92 | 134 | 101 | 123 | 2.04 | 1.44 |
20140513 | 0 | 丽水 | 32 | 19 | 16 | 32 | 29 | 5 | 6 | 24 | 28 | 50 | 99 | 64 | 88 | 0.64 | 0.81 |
20140513 | 0 | 义乌 | 73 | 53 | 44 | 86 | 63 | 50 | 22 | 56 | 31 | 27 | 159 | 58 | 144 | 1.11 | 0.87 |
20140513 | 0 | 乌鲁木齐 | 113 | 41 | 32 | 175 | 131 | 14 | 17 | 85 | 45 | 11 | 69 | 42 | 57 | 1.08 | 0.66 |
20140513 | 0 | 九江 | 71 | 44 | 30 | 92 | 67 | 23 | 22 | 34 | 27 | 24 | 69 | 46 | 64 | 0.73 | 0.75 |
20140513 | 0 | 乳山 | 69 | 50 | 32 | 54 | 48 | 12 | 18 | 17 | 16 | 89 | 159 | 108 | 151 | 0.95 | 0.85 |
20140513 | 0 | 云浮 | 56 | 39 | 23 | 62 | 33 | 12 | 15 | 18 | 15 | 7 | 19 | 8 | 12 | 2.97 | 2.39 |
20140513 | 0 | 佛山 | 88 | 65 | 57 | 120 | 83 | 31 | 31 | 102 | 76 | 8 | 175 | 37 | 65 | 1.85 | 1.47 |
20140513 | 0 | 保定 | 91 | 52 | 34 | 132 | 112 | 40 | 29 | 29 | 27 | 48 | 135 | 94 | 108 | 1.28 | 1.07 |
20140513 | 0 | 克拉玛依 | 58 | 24 | 19 | 65 | 54 | 4 | 4 | 5 | 5 | 86 | 111 | 87 | 100 | 0.88 | 1.24 |
20140513 | 0 | 兰州 | 64 | 37 | 59 | 78 | 119 | 35 | 53 | 50 | 69 | 50 | 148 | 76 | 112 | 1.19 | 1.85 |
20140513 | 0 | 包头 | 140 | 44 | 43 | 229 | 164 | 31 | 55 | 94 | 54 | 15 | 147 | 77 | 133 | 1.31 | 1.14 |
20140513 | 0 | 北京 | 81 | 49 | 35 | 112 | 73 | 18 | 8 | 56 | 45 | 71 | 145 | 105 | 128 | 0.71 | 0.68 |
20140513 | 0 | 北海 | 61 | 41 | 16 | 72 | 48 | 13 | 17 | 11 | 11 | 87 | 154 | 108 | 133 | 1.57 | 1.69 |
20140513 | 0 | 南京 | 109 | 62 | 67 | 168 | 137 | 16 | 25 | 118 | 63 | 16 | 198 | 80 | 174 | 0.98 | 1.03 |
20140513 | 0 | 南充 | 141 | 108 | 94 | 148 | 135 | 17 | 26 | 33 | 31 | 40 | 110 | 40 | 56 | 0.94 | 0.83 |
20140513 | 0 | 南宁 | 73 | 53 | 35 | 96 | 80 | 9 | 20 | 48 | 40 | 61 | 142 | 97 | 123 | 1.47 | 1.33 |
20140513 | 0 | 南昌 | 92 | 49 | 36 | 133 | 71 | 13 | 21 | 73 | 32 | 15 | 116 | 55 | 105 | 1.47 | 1.04 |
20140513 | 0 | 南通 | 111 | 84 | 92 | 163 | 138 | 63 | 68 | 95 | 74 | 46 | 189 | 86 | 157 | 0.82 | 1.47 |
20140513 | 0 | 即墨 | 94 | 70 | 43 | 130 | 79 | 71 | 37 | 98 | 45 | 38 | 140 | 73 | 129 | 0.9 | 0.69 |
20140513 | 0 | 厦门 | 31 | 18 | 19 | 31 | 28 | 19 | 20 | 55 | 49 | 30 | 89 | 48 | 62 | 0.4 | 0.76 |
20140513 | 0 | 句容 | 83 | 61 | 72 | 85 | 65 | 43 | 43 | 47 | 36 | 75 | 255 | 136 | 193 | 0.87 | 1.19 |
20140513 | 0 | 台州 | 78 | 57 | 49 | 67 | 57 | 8 | 6 | 32 | 33 | 35 | 110 | 55 | 97 | 0.95 | 0.98 |
20140513 | 0 | 合肥 | 93 | 62 | 52 | 136 | 105 | 15 | 13 | 45 | 27 | 18 | 66 | 28 | 55 | 1.13 | 0.77 |
20140513 | 0 | 吉林 | 32 | 9 | 13 | 16 | 24 | 5 | 6 | 9 | 17 | 103 | 110 | 87 | 103 | 1.06 | 1.16 |
20140513 | 0 | 吴江 | 92 | 66 | 48 | 133 | 87 | 55 | 32 | 62 | 31 | 63 | 146 | 94 | 139 | 1.11 | 0.82 |
20140513 | 0 | 呼和浩特 | 98 | 54 | 38 | 145 | 114 | 58 | 39 | 68 | 53 | 21 | 76 | 43 | 62 | 2.26 | 2.02 |
20140513 | 0 | 咸阳 | 83 | 44 | 43 | 115 | 134 | 37 | 40 | 76 | 57 | 30 | 109 | 73 | 88 | 1.15 | 1.16 |
20140513 | 0 | 哈尔滨 | 33 | 23 | 25 | 22 | 34 | 8 | 10 | 19 | 38 | 74 | 84 | 65 | 69 | 0.51 | 0.62 |
20140513 | 0 | 唐山 | 82 | 55 | 40 | 113 | 80 | 19 | 16 | 48 | 38 | 80 | 169 | 121 | 149 | 0.67 | 0.79 |
20140513 | 0 | 嘉兴 | 139 | 106 | 60 | 153 | 82 | 19 | 27 | 45 | 45 | 80 | 166 | 94 | 140 | 0.98 | 0.96 |
20140513 | 0 | 嘉峪关 | 52 | 12 | 24 | 53 | 97 | 33 | 47 | 28 | 29 | 120 | 171 | 146 | 162 | 1.1 | 0.9 |
20140513 | 0 | 大同 | 97 | 56 | 38 | 143 | 101 | 26 | 36 | 60 | 36 | 41 | 86 | 58 | 80 | 1.36 | 2.22 |
20140513 | 0 | 大庆 | 30 | 21 | 29 | 23 | 38 | 9 | 9 | 10 | 16 | 80 | 83 | 70 | 74 | 0.37 | 0.4 |
20140513 | 0 | 大连 | 50 | 30 | 37 | 50 | 55 | 8 | 7 | 36 | 39 | 86 | 108 | 83 | 95 | 0.72 | 0.9 |
20140513 | 0 | 天津 | 69 | 44 | 43 | 87 | 76 | 23 | 24 | 53 | 40 | 51 | 125 | 85 | 105 | 1.03 | 1.39 |
20140513 | 0 | 太仓 | 106 | 80 | 80 | 114 | 108 | 39 | 61 | 46 | 33 | 119 | 153 | 129 | 139 | 1.21 | 1.32 |
20140513 | 0 | 太原 | 155 | 102 | 63 | 260 | 155 | 61 | 59 | 116 | 62 | 10 | 111 | 62 | 98 | 1.61 | 1.18 |
20140513 | 0 | 威海 | 51 | 27 | 31 | 51 | 57 | 20 | 27 | 17 | 28 | 124 | 177 | 109 | 135 | 0.5 | 0.66 |
20140513 | 0 | 宁波 | 58 | 41 | 46 | 66 | 62 | 18 | 37 | 60 | 38 | 68 | 297 | 111 | 163 | 1.04 | 1.23 |
20140513 | 0 | 安阳 | 81 | 50 | 64 | 111 | 122 | 66 | 32 | 78 | 58 | 51 | 144 | 103 | 134 | 0.9 | 1.2 |
Site air quality table
date | hour | site | AQI | PM2.5 | PM2.5_24h | PM10 | PM10_24h | SO2 | SO2_24h | NO2 | NO2_24h | O3 | O3_24h | O3_8h | O3_8h_24h | CO | CO_24h |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20140513 | 0 | 1001A | 73 | 41 | 34 | 96 | 73 | 17 | 5 | 42 | 45 | 92 | 155 | 111 | 137 | 0.7 | 0.738 |
20140513 | 0 | 1002A | 32 | 22 | 28 | 60 | 2 | 4 | 23 | 20 | 63 | 143 | 106 | 129 | 0.2 | 0.221 | |
20140513 | 0 | 1003A | 84 | 54 | 36 | 118 | 74 | 20 | 8 | 39 | 42 | 86 | 151 | 113 | 136 | 0.7 | 0.788 |
20140513 | 0 | 1004A | 67 | 39 | 31 | 84 | 60 | 22 | 7 | 29 | 37 | 88 | 154 | 84 | 127 | 0.6 | 0.686 |
20140513 | 0 | 1005A | 75 | 47 | 36 | 100 | 78 | 20 | 7 | 42 | 52 | 107 | 176 | 130 | 155 | 0.6 | 0.675 |
20140513 | 0 | 1006A | 83 | 56 | 34 | 115 | 73 | 19 | 8 | 59 | 53 | 77 | 162 | 119 | 146 | 0.9 | 0.726 |
20140513 | 0 | 1007A | 102 | 61 | 38 | 153 | 86 | 17 | 10 | 72 | 56 | 48 | 130 | 94 | 121 | 0.7 | 0.7 |
20140513 | 0 | 1008A | 82 | 59 | 41 | 113 | 74 | 15 | 6 | 76 | 45 | 50 | 155 | 107 | 135 | 0.8 | 0.636 |
20140513 | 0 | 1009A | 25 | 40 | 3 | 24 | 76 | 76 | 0.691 | ||||||||
20140513 | 0 | 1010A | 68 | 32 | 32 | 86 | 69 | 3 | 5 | 41 | 33 | 59 | 144 | 95 | 119 | 0.5 | 0.575 |
20140513 | 0 | 1011A | 90 | 55 | 41 | 130 | 85 | 20 | 9 | 58 | 53 | 67 | 147 | 105 | 126 | 0.6 | 0.596 |
20140513 | 0 | 1012A | 86 | 47 | 35 | 121 | 89 | 24 | 18 | 97 | 55 | 36 | 142 | 95 | 126 | 1 | 0.629 |
20140513 | 0 | 1013A | 77 | 56 | 57 | 71 | 88 | 24 | 21 | 33 | 35 | 66 | 136 | 100 | 121 | 0.117 | 0.774 |
20140513 | 0 | 1014A | 72 | 38 | 41 | 93 | 75 | 19 | 20 | 35 | 40 | 85 | 167 | 128 | 148 | 0.936 | 1.478 |
20140513 | 0 | 1015A | 62 | 35 | 37 | 74 | 65 | 21 | 22 | 29 | 34 | 67 | 134 | 102 | 118 | 1.534 | 2.072 |
20140513 | 0 | 1016A | 67 | 48 | 50 | 76 | 78 | 22 | 19 | 32 | 41 | 72 | 127 | 95 | 117 | 0.93 | 1.318 |
20140513 | 0 | 1017A | 53 | 28 | 33 | 55 | 60 | 28 | 24 | 43 | 39 | 69 | 134 | 101 | 116 | 1.052 | 1.767 |
20140513 | 0 | 1018A | 59 | 67 | 50 | 32 | 19 | 40 | 36 | 61 | 131 | 94 | 120 | 1.017 | |||
20140513 | 0 | 1019A | 80 | 45 | 54 | 109 | 106 | 24 | 35 | 39 | 42 | 70 | 145 | 112 | 127 | 0.335 | 1.302 |
20140513 | 0 | 1020A | 83 | 61 | 60 | 64 | 83 | 25 | 22 | 33 | 33 | 80 | 145 | 107 | 131 | 0.715 | 1.262 |
20140513 | 0 | 1021A | 64 | 42 | 45 | 78 | 84 | 17 | 26 | 46 | 40 | 66 | 152 | 109 | 134 | 0.631 | 1.023 |
20140513 | 0 | 1022A | 72 | 42 | 48 | 93 | 85 | 13 | 16 | 33 | 32 | 57 | 108 | 81 | 101 | 1.087 | 1.356 |
20140513 | 0 | 1023A | 76 | 40 | 32 | 102 | 54 | 9 | 23 | 54 | 43 | 11 | 89 | 38 | 63 | 1.373 | 1.803 |
20140513 | 0 | 1024A | 88 | 65 | 58 | 89 | 87 | 28 | 19 | 118 | 48 | 12 | 48 | 36 | 43 | 0.797 | 0.996 |
20140513 | 0 | 1025A | 66 | 37 | 38 | 82 | 94 | 18 | 16 | 42 | 43 | 64 | 127 | 94 | 110 | 0.73 | 1.114 |
20140513 | 0 | 1026A | 86 | 51 | 43 | 122 | 98 | 27 | 26 | 57 | 37 | 51 | 166 | 88 | 115 | 1.471 | 1.17 |
20140513 | 0 | 1027A | 82 | 60 | 44 | 90 | 73 | 23 | 26 | 24 | 19 | 67 | 124 | 94 | 112 | 0.916 | 1.091 |
20140513 | 0 | 1028A | 79 | 58 | 50 | 118 | 74 | 44 | 147 | 48 | 22 | 136 | 74 | 117 | 1.139 | 1.076 | |
20140513 | 0 | 1029A | 124 | 58 | 37 | 197 | 125 | 98 | 70 | 113 | 63 | 11 | 151 | 77 | 132 | 1.133 | 0.825 |
20140513 | 0 | 1030A | 100 | 50 | 45 | 150 | 112 | 56 | 40 | 90 | 62 | 9 | 57 | 35 | 46 | 1 | 0.81 |
20140513 | 0 | 1031A | 131 | 80 | 45 | 212 | 138 | 77 | 60 | 65 | 16 | 170 | 92 | 145 | 0.846 | 0.603 | |
20140513 | 0 | 1032A | 144 | 76 | 34 | 238 | 109 | 107 | 56 | 91 | 55 | 6 | 128 | 64 | 113 | 1.37 | 1.073 |
20140513 | 0 | 1033A | 123 | 63 | 36 | 195 | 94 | 72 | 34 | 90 | 49 | 17 | 164 | 81 | 138 | 0.61 | 0.465 |
20140513 | 0 | 1034A | 127 | 80 | 25 | 204 | 85 | 116 | 57 | 98 | 55 | 8 | 115 | 52 | 98 | 0.827 | 0.613 |
20140513 | 0 | 1035A | 80 | 27 | 27 | 110 | 111 | 90 | 86 | 10 | 9 | 145 | 164 | 138 | 140 | 0.423 | 0.402 |
20140513 | 0 | 1036A | 93 | 47 | 41 | 136 | 94 | 15 | 12 | 37 | 33 | 81 | 164 | 125 | 146 | 0.538 | 0.587 |
20140513 | 0 | 1037A | 100 | 75 | 38 | 117 | 83 | 14 | 12 | 59 | 30 | 58 | 179 | 126 | 156 | 0.724 | 0.554 |
20140513 | 0 | 1038A | 90 | 38 | 37 | 130 | 77 | 17 | 16 | 53 | 55 | 98 | 172 | 119 | 146 | 0.64 | 0.751 |
20140513 | 0 | 1039A | 107 | 80 | 37 | 139 | 66 | 46 | 47 | 68 | 56 | 73 | 149 | 106 | 131 | 0.516 | 0.526 |
20140513 | 0 | 1040A | 85 | 58 | 45 | 120 | 87 | 10 | 8 | 37 | 29 | 80 | 162 | 124 | 148 | 0.801 | 0.772 |
20140513 | 0 | 1041A | 69 | 50 | 41 | 83 | 72 | 34 | 28 | 44 | 37 | 83 | 163 | 114 | 147 | 0.533 | 1.095 |
20140513 | 0 | 1042A | 72 | 31 | 30 | 93 | 67 | 39 | 50 | 25 | 33 | 14 | 28 | 20 | 27 | 1.352 | 1.503 |
20140513 | 0 | 1043A | 82 | 22 | 11 | 114 | 64 | 11 | 5 | 48 | 40 | 11 | 57 | 25 | 34 | 1.044 | 0.874 |
20140513 | 0 | 1044A | 40 | 26 | 23 | 40 | 32 | 26 | 30 | 69 | 14 | 43 | 21 | 27 | 1.056 | 1.062 | |
20140513 | 0 | 1045A | 67 | 38 | 41 | 83 | 64 | 18 | 21 | 54 | 37 | 65 | 143 | 100 | 118 | 0.752 | 0.828 |
20140513 | 0 | 1046A | 66 | 3 | 6 | 81 | 57 | 29 | 22 | 58 | 24 | 52 | 187 | 115 | 154 | 1.313 | 1.023 |
20140513 | 0 | 1047A | 79 | 52 | 51 | 107 | 157 | 28 | 40 | 42 | 52 | 90 | 158 | 124 | 141 | 0.719 | 0.995 |
20140513 | 0 | 1048A | 98 | 59 | 58 | 146 | 172 | 18 | 40 | 35 | 47 | 69 | 130 | 104 | 118 | 1.624 | 1.946 |
20140513 | 0 | 1049A | 75 | 54 | 62 | 100 | 150 | 41 | 52 | 55 | 63 | 77 | 158 | 118 | 141 | 0.9 | 1.098 |
20140513 | 0 | 1050A | 182 | 137 | 66 | 140 | 35 | 58 | 34 | 47 | 57 | 158 | 119 | 143 | 1.038 | 1.525 |
Related literature
- Dong, R., Fisman, R., Wang, Y., and Xu, N.H., 2019, “Air pollution, affect, and forecasting bias: Evidence from Chinese financial analysts”, Journal of Financial Economics, forthcoming.< /li>
- Huang, J. K., Xu, N. H., and Yu, H.H., 2019, “Pollution and performance: Do investors make worse trades on hazy days?”, Management Science, forthcoming.
- Huang Rongbing, Zhao Qian, Wang Liyan, 2019: "Natural Resource Assets Off-duty Audit and Air Pollution Prevention: "Harmonious Championship" or "Environmental Protection Qualifying Competition", "China Industrial Economy" Issue 10.
- Shen Yongjian, Yu Shuangli, Jiang Dequan, 2019: "Can air quality improvement reduce corporate labor costs?", "Management World" Issue 6.
- Sun Chuanwang, Luo Yuan, and Yao Xin, 2019: "Transportation Infrastructure and Urban Air Pollution - Empirical Evidence from China", "Economic Research" Issue 8.
- Chen Shuo, Chen Ting, 2014: "Air Quality and Public Health: Taking Sulfur Dioxide Emissions from Thermal Power Plants as an Example", "Economic Research" Issue 8.
- Guo Feng, Shi Qingling, 2017: "Official Replacement, Collusive Deterrence, and Temporary Improvement of Air Quality", "Economic Research" Issue 7.
- Luo Zhi, Li Haoran, 2018: "The Impact of the Implementation of the "Ten Atmospheric Policy" on Air Quality", "China Industrial Economy" Issue 9.
Data update frequency
Annual Update